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Abstract
Background: The complex nature of biological data has driven the development of specialized software tools. Scienti�c
work�ow management systems simplify the assembly of such tools into pipelines, assist with job automation and aid
reproducibility of analyses. Many contemporary work�ow tools are specialized and not designed for highly complex
work�ows, such as with nested loops, dynamic scheduling and parametrization, which is common in e.g. machine
learning.
Findings: SciPipe is a work�ow programming library implemented in the programming language Go, for managing
complex and dynamic pipelines in bioinformatics, cheminformatics and other �elds. SciPipe helps in particular with
work�ow constructs common in machine learning, such as extensive branching, parameter sweeps and dynamic
scheduling and parametrization of downstream tasks. SciPipe builds on Flow-based programming principles to support
agile development of work�ows based on a library of self-contained, reusable components. It supports running subsets of
work�ows for improved iterative development, and provides a data-centric audit logging feature that saves a full audit
trace for every output �le of a work�ow, which can be converted to other formats such as HTML, TeX and PDF on-demand.
The utility of SciPipe is demonstrated with a machine learning pipeline, a genomics, and a transcriptomics pipeline.
Conclusions: SciPipe provides a solution for agile development of complex and dynamic pipelines, especially in machine
leaning, through a �exible programming API suitable for scientists used to programming or scripting.
Key words: Scienti�c Work�ow Management Systems, Pipelines, Reproducibility, Machine Learning, Flow-based Program-
ming, Go, Golang

Findings

Driven by the highly complex and heterogeneous nature of
biological data [1, 2], computational biology is characterized
by an extensive ecosystem of command-line tools, each spe-
cialized on one or a few of the many aspects of biological
data. Because of their specialized nature these tools gener-
ally need to be assembled into sequences of processing steps,
often called “pipelines”, to produce meaningful results from
raw data. Due to the increasingly large sizes of biological data
sets [3, 4], such pipelines often require integration with High-
Performance Computing (HPC) infrastructures or cloud com-

puting resources to complete in an acceptable time. This has
created a need for tools to coordinate the execution of such
pipelines in an e�cient, robust and reproducible manner. This
coordination can in principle be done with simple scripts in lan-
guages like Bash, Python or Perl, but such scripts can quickly
become fragile.
When the number of tasks becomes su�ciently large, and

the execution time su�ciently long, the risk for failures dur-
ing the execution of such scripts increases almost linearly with
time, and simple scripts are not a good strategy for when large
jobs need to be restarted from a failure. They lack the abil-
ity to distinguish between �nished and half-�nished �les, and
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can not by default detect if intermediate output �les are al-
ready created and can be reused to save computing time and
resources. These limits with simple scripts calls for a strategy
with a higher level of automation. This need is addressed by a
class of software commonly referred to as “scienti�c work�ow
management systems” or simply “work�ow tools”. Through a
more automated way of handling the execution, work�ow tools
can improve the robustness, reproducibility and understand-
ability of computational analyses. In concrete terms, work�ow
tools provide means for handling atomic writes (making sure
�nished and half-�nished �les can be separated after a crashed
or stopped work�ow), caching of intermediate results, distri-
bution of tasks to the available computing resources and au-
tomatically keeping or generating records of exactly what was
run, to make analyses reproducible.
It is widely agreed upon that work�ow tools generally make

it easier to develop automated, reproducible and fault-tolerant
pipelines, althoughmany challenges and potential areas for im-
provement still do exist with existing tools [5]. This has made
scienti�c work�ow systems a highly active area of research.
Numerous work�ow tools have been developed and many new
ones are continuously being developed.
The work�ow tools developed di�er quite widely in terms

of how work�ows are being de�ned and what features are in-
cluded out-of-the box. This probably re�ects the fact that
di�erent types of work�ow tools can be suited for di�er-
ent categories of users and use cases. Graphical tools like
Galaxy [6, 7, 8] and Yabi [9] provide easy to use environments
especially well-suited for scientists without scripting experi-
ence. Text-based tools like Snakemake [10], Next�ow [11],
BPipe [12], Cuneiform [13] and Pachyderm [14] on the other
hand, are implemented as Domain Speci�c Languages (DSLs),
that can often provide a higher level of �exibility, at the ex-
pense of the ease of use of a graphical user interface. They
can thus be well suited for “power users” with experience in
scripting or programming.
Even more power and �exibility can be gained from work-

�ow tools implemented as programming libraries, which pro-
vide their functionality through a programming API accessed
from an existing programming language such as Python, Perl
or Bash. By implementing the API in an existing language,
users get access to the full power of the implementation lan-
guage when writing work�ows, as well as the existing tooling
around the language. One example of a work�ow system im-
plemented in this way is Luigi [15].
As reported in [5], although many users �nd important ben-

e�ts in using work�ow tools, many also experience limitations
and challenges with existing work�ow tools, especially regard-
ing the ability to express complex work�ow constructs such
as branching and iteration, as well as limitations in terms of
audit logging and reproducibility. Below we will brie�y review
a few of existing, popular systems, and highlight areas where
we found that the development of a new approach and tool was
desirable for use cases that includes very complex work�ow
constructs.
Firstly, graphical tools like Galaxy and Yabi, although being

easy-to-use even for users without programming experience,
is often perceived to be limited in their �exibility due to the
need to install and run a web server in order to use them, which
is not always permitted, or practical, on HPC systems.
Text-based tools implemented as DSLs, such as Snakemake,

Next�ow, BPipe, Pachyderm and Cuneiform do not have this
limitation, but have other characteristics which might be prob-
lematic for for complex work�ows in some cases.
For example, Snakemake is dependent on �le naming strate-

gies for de�ning dependencies, which can in some situations
be limiting, and also uses a “pull-based” scheduling strategy
(the work�ow is invoked by asking for a speci�c output �le,

where after all tasks required for reproducing the �le will be
executed). While this makes it very easy to reproduce speci�c
�les, it can make the system hard to use for work�ows involv-
ing complex constructs such as nested parameter sweeps and
cross-validation fold generation, where the �nal �le names
might be hard if at all possible to foresee. Snakemake also
performs scheduling and execution of the work�ow graph in
separate stages, which means that it does not support dynamic
scheduling.
Dynamic scheduling, which basically means on-line

scheduling during the work�ow execution [16], is useful both
where the number of tasks is unknown before the work�ow is
executed, and where a task needs to be scheduled with a param-
eter value obtained during the work�ow execution. An example
of the former is reading row by row from a database, splitting
a �le of unknown size into chunks, or processing a continuous
stream of data from an external process such as an automated
laboratory instrument. An example of the latter is training a
machine learning model with hyperparameters obtained from
a parameter optimization step prior to the �nal training step.
BPipe constitutes a sort of middle-ground in terms of dy-

namic scheduling. It supports dynamic decisions of what to
run by allowing execution-time logic inside pipeline stages, as
long as the structure of the work�ow does not need to change.
Dynamic change of the work�ow structure can be important
in work�ows for machine learning though, e.g. if parametriz-
ing the number of folds in a cross-validation based on a value
calculated during the work�ow run, such as dataset size.
Next�ow, has push-based scheduling and supports full dy-

namic scheduling via the data�ow paradigm, does not have this
limitation. It does not, however, support creating a library of
reusable work�ow components, because of its use of data�ow
variables shared across component de�nitions, as this requires
processes and the work�ow dependency graph to be de�ned
together.
Pachyderm is a container-based work�ow system which

uses a JSON and YAML-based DSL to de�ne pipelines. It has a
set of innovative features including a version-controlled data
management component with Git-like semantics and support
for triggering of pipelines based on data updates, among oth-
ers. These in combination can provide some aspects of dynamic
scheduling. On the other hand, the more static nature of the
JSON/YAML-based DSLmight not be optimal for really complex
setups such as creating loops or branches based on parameter
values obtained during the execution of the work�ow. The re-
quirement of Pachyderm to be run on a Kubernetes [17] cluster
can also make it less suitable for some academic environments
where ability to run pipelines also on traditional HPC clusters
is required. On the other hand, because of the easy incorpora-
tion of existing tools, it is possible to provide such more com-
plex behavior by including a more dynamic work�ow tool as
a work�ow step in Pachyderm instead. We thus primarily see
Pachyderm as a complement to other light-weight work�ow
systems, rather necessarily than an alternative.
The usefulness of such an approach where an over-arching

frameworks provide primarily an orchestration role while call-
ing out to other systems for the actual work�ows, is demon-
strated by the Arteria project [18]. Arteria builds on the event-
based StackStorm framework to allow triggering of external
work�ows based on any type of event, providing a �exible au-
tomation framework for sequencing core facilities.
Going back to traditional work�ow systems, Cuneiform

takes a di�erent approach compared to most work�ow tools by
wrapping shell commands in functions in a �exible functional
language (described in [19]), which allows leveraging common
bene�ts in functional programming languages such as side-
e�ect free functions, to de�ne work�ows. It also leverages the
distributed programming capabilities of the Erlang Virtual Ma-
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chine (EVM), to provide automatic distribution of workloads. It
is still a new, domain speci�c language though, which means
that tooling and editor support might not be as extensive as for
an established programming language.
Luigi is a work�ow library developed by Spotify, which pro-

vides a high degree of �exibility due to its implementation as
a programming library, Python. For example, the program-
ming API exposes full control over �le name generation. Luigi
also provides integration with many Big Data systems such
as Hadoop and Spark, and cloud-centric storage systems like
HDFS and S3.
SciLuigi [20] is a wrapper library for Luigi, previously de-

veloped by the authors, which introduces a number of bene-
�ts for scienti�c work�ows by leveraging selected principles
from Flow-based programming (FBP) (named ports and sep-
arate network de�nition) to achieve an API that makes itera-
tively changing the work�ow connectivity easier than in vanilla
Luigi.
While Luigi and SciLuigi were shown to be a helpful solution

for complex work�ows in drug discovery, they also have a num-
ber of limitations for highly complex and dynamic work�ows.
Firstly, since Python is an untyped, interpreted language, cer-
tain software bugs are discovered only far into a work�ow run,
rather than while compiling the program. Secondly, the fact
that Luigi creates separate processes for each worker, which
communicate with the central Luigi scheduler via HTTP re-
quests over the network, can lead to robustness problems when
going over a certain number of workers (around 64 in the au-
thors’ experience) leading to HTTP connection time-outs.
The mentioned limitations for complex work�ows in exist-

ing tools is the background and motivation for developing the
SciPipe library.

The SciPipe work�ow library

SciPipe is a work�ow library based on Flow-Based Program-
ming principles, implemented as a library in the Go program-
ming language. The library is freely available as open source
on GitHub [21]. All releases of GitHub are also archived on Zen-
odo [? ]. Similarly to Next�ow, SciPipe leverages the data�ow
paradigm to achieve dynamic scheduling of tasks based on in-
put data, allowing many work�ow constructs not easily coded
in many other tools.
Combined with design principles from Flow-based pro-

gramming such as separate network de�nition and named
ports bound to processes, this has resulted in a productive and
discoverable API that enables agile authoring of complex and
dynamic work�ows. The fact that the work�ow network is de-
�ned separately from processes, enables building work�ows
based on a library of reusable components, although the cre-
ation of ad-hoc shell-command based components is also sup-
ported.
SciPipe provides a provenance tracking feature that creates

one audit log per output �le, rather than only one for the whole
work�ow run. This means that it is always easy to verify ex-
actly how each output of a work�ow was created.
SciPipe also provides a few features which are not very com-

mon among existing tools, or which are not commonly occur-
ring together in one system. These include support for stream-
ing via Unix named pipes, ability to run push-based work�ows
up to a speci�c stage of the work�ow, and �exible support for
�le naming of intermediate data �les generated by work�ows.
By implementing SciPipe as a library in an existing lan-

guage, the language’s ecosystem of tooling, editor support and
third-party libraries can be directly used to avoid “reinventing
the wheel” in these areas. By leveraging the built-in concur-
rency features of Go, such as go-routines and channels, the

developed code base has been kept small compared with sim-
ilar tools, and also does not require external dependencies for
basic usage (some external tools are used for optional features
like PDF generation and graph plotting). This means that the
code base should be possible to maintain for a single developer
or small team, and that the code base is practical to include in
work�ow developers’ own source code repositories, in order to
future-proof the functionality of work�ows.
Below, we �rst brie�y describe how SciPipe work�ows are

created. We then describe in some detail the features of SciPipe
that are the most novel or improves most upon existing tools,
followed by a few more commonplace technical considerations.
We �nally demonstrate the usefulness of SciPipe by applying it
to a set of case study work�ows in machine learning for drug
discovery and next-generation sequencing genomics and tran-
scriptomics.

Writing work�ows with SciPipe

SciPipe work�ows are written as Go programs, in �les ending
with the .go extension. As such, they require the Go tool chain
to be installed for compiling and running them. The Go pro-
grams can be either compiled to self-contained executable �les
with the go build command, or run directly, using the go run
command.
The simplest way to write a SciPipe program is to write the

work�ow de�nition in the program’s main() function, which
is executed when running the compiled executable �le, or run-
ning the �le as script with go run. An example work�ow writ-
ten in this way is shown in in �gure 1, which provides a simple
example work�ow consisting of three processes, demonstrat-
ing a few of the basic features of SciPipe. The �rst process
writes a string of DNA to a �le, the second computes the base
complement, and the last process reverses the string. All in all,
the work�ow computes the reverse base complement of the
initial string.
As can be seen in �gure 1 on line 11, a work�ow object

(or struct, in Go terminology) is �rst initialized, with a name
and a setting for the maximum number of tasks to run at a
time. Furthermore, on line 15-19, processes are de�ned with
the Workflow.NewProc() method on the work�ow struct, with
name and a command pattern which is very similar to the Bash
shell command that would be used to run a command manu-
ally, but where concrete �le names have been replaced with
placeholders, on the form {i:INPORTNAME}, {o:OUTPORTNAME} or
{p:PARAMETERNAME}. These placeholders de�ne input and output
�les, as well as parameter values, and works as a sort of tem-
plates, that will be replaced with concrete values as concrete
tasks are scheduled and executed.
As can be seen on lines 17, 21 and 25, output paths to use

for output �les are de�ned using the Process.SetOut()method,
taking an out-port name and a pattern for how to generate the
path. For simple work�ows this can be just a static �le name,
but for more complex work�ows with processes that produce
more than one output on the same port – e.g. by processing
di�erent input �les, or using di�erent sets of parameters – it
is often best to reuse some of the input paths and parameter
values con�gured earlier in the command pattern to generate
a unique path for each output.
Finally, on lines 27-29, we see how in-ports and out-ports

are connected in order to de�ne the data dependencies between
tasks. Here, the in-port and out-port names used in the place-
holders in the command pattern described above, are used to
access the corresponding in-ports and out-ports, and making
connections between them, with a syntax on the general form
of InPort.From(OutPort).
The last thing needed to do to run the work�ow, is seen

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 | GigaScience, 2018, Vol. XX, No. X

1 package main

2

3 import (

4 "github.com/scipipe/scipipe"

5 )

6

7 const dna = "AAAGCCCGTGGGGGACCTGTTC"

8

9 func main() {

10 // Initialize workflow, using max 4 CPU cores

11 wf := scipipe.NewWorkflow("DNA Base Complement Workflow", 4)

12

13 // Initialize processes based on shell commands:

14

15 // makeDNA writes a DNA string to a file

16 makeDNA := wf.NewProc("Make DNA", "echo "+dna+" > {o:dna}")

17 makeDNA.SetOut("dna", "dna.txt")

18

19 // complmt computes the base complement of a DNA string

20 complmt := wf.NewProc("Base Complement", "cat {i:in} | tr ATCG TAGC > {o:compl}")

21 complmt.SetOut("compl", "{i:in|%.txt}.compl.txt")

22

23 // reverse reverses the input DNA string

24 reverse := wf.NewProc("Reverse", "cat {i:in} | rev > {o:rev}")

25 reverse.SetOut("rev", "{i:in|%.txt}.rev.txt")

26

27 // Connect data dependencies between out- and in-ports

28 complmt.In("in").From(makeDNA.Out("dna"))

29 reverse.In("in").From(complmt.Out("compl"))

30

31 // Run the workflow

32 wf.Run()

33 }

Figure 1. A simple example work�ow implemented with SciPipe. The work�ow computes the reverse base complement of a string of DNA, using standard UNIX
tools. The work�ow is a Go program and is supposed to be saved in a �le with the .go extension and executed with the go run command. On line 4, the SciPipe
library is imported, to be later accessed as scipipe. On line 7, a short string of DNA is de�ned. On line 9-33, the full work�ow is implemented in the program’s
main() function, meaning that it will be executed when the resulting program is executed. On line 11, a new work�ow object (or “struct” in Go terms) is initiated
with a name and the maximum number of cores to use. On lines 15-25, the work�ow components, or processes, are initiated, each with a name and a shell
command pattern. Input �le names are de�ned with a placeholder on the form {i:INPORTNAME} and outputs on the form {o:OUTPORTNAME}. The port-name will be
used later to access the corresponding ports for setting up data dependencies. On line 16, a component that writes the previously de�ned DNA string to a �le is
initiated, and on line 17, the �le path pattern for the out-port dna is de�ned (in this case a static �le name). On line 20, a component that translates each DNA
base to its complementary counterpart is initiated. On line 21, the �le path pattern for its only out-port is de�ned. In this case, reusing the �le path of the �le it
will receive on its in-port named in, thus the {i:in} part. The %.txt part removes .txt from the input path. On line 24, a component that will reverse the DNA
string is initiated. On lines 27-29, data dependencies are de�ned via the in- and out-ports de�ned earlier as part of the shell command patterns. On line 32, the
work�ow is being run.

on line 32, where the Workflow.Run() method is executed. Pro-
vided that the work�ow code in �gure 1 is saved in a �le named
workflow.go, it can be run using the go run command, like so:
$ go run workflow.go

This will then produce three output �les and one accompa-
nying audit log for each �le, which we can be seen by listing
the �les in a terminal:
dna.txt
dna.txt.audit.json
dna.compl.txt
dna.compl.txt.audit.json
dna.compl.rev.txt
dna.compl.rev.txt.audit.json

The �le dna.txt should now contain the string
AAAGCCCGTGGGGGACCTGTTC, and dna.compl.rev.txt should
contain GAACAGGTCCCCCACGGGCTTT, which is the reverse base
complement of the �rst string. In the last �le above, the full
audit log for this minimal work�ow can be found. An example
content of this �le is shown in �gure 2.
In this code example, it can be seen that both of the com-

mands we executed are available, and also that the Reverse
process lists its "upstream" processes, which are indexed

by the input �le names in its command. Thus, under the
dna.compl.txt input �le, we �nd the Base Complement process
together with its meta-data, and one further upstream pro-
cess (the Make DNA process). This hierarchic structure of the
audit log ensures that the complete audit trace, including all
commands contributing to the production of an output �le, is
available for each output �le from the work�ow.
More information about how to write work�ows with SciP-

ipe is available on the documentation website [23]. Note that
the full documentation on this website is also available in a
folder named docs inside the SciPipe Git repository, which en-
sures that documentation for the version currently used, is al-
ways available.

Dynamic scheduling

Since SciPipe is built on the principles from Flow-based pro-
gramming (see the methods section for more details), a SciP-
ipe program consists of independently and concurrently run-
ning processes, which schedule new tasks continually during
the work�ow run. This is here referred to as dynamic scheduling.
This means that it is possible to create a process that obtains
a value and passes it on to a downstream process as a param-
eter, so that new tasks can be scheduled with it. This feature
is important in machine learning work�ows, where hyper pa-
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1 {

2 "ID": "tuir75c24kxe4rrqmm2p",

3 "ProcessName": "Reverse",

4 "Command": "cat ../dna.compl.txt | rev \u003e dna.compl.rev.txt",

5 "Params": {},

6 "Tags": {},

7 "StartTime": "2018-07-26T13:02:16.855172344+02:00",

8 "FinishTime": "2018-07-26T13:02:16.863536059+02:00",

9 "ExecTimeNS": 8363715,

10 "OutFiles": {

11 "rev": "dna.compl.rev.txt"

12 },

13 "Upstream": {

14 "dna.compl.txt": {

15 "ID": "2g7tr2trhu9zubovwlua",

16 "ProcessName": "Base Complement",

17 "Command": "cat ../dna.txt | tr ATCG TAGC \u003e dna.compl.txt",

18 "Params": {},

19 "Tags": {},

20 "StartTime": "2018-07-26T13:02:16.845769702+02:00",

21 "FinishTime": "2018-07-26T13:02:16.854035213+02:00",

22 "ExecTimeNS": 8265532,

23 "OutFiles": {

24 "compl": "dna.compl.txt"

25 },

26 "Upstream": {

27 "dna.txt": {

28 "ID": "vu8ltmoujzo3vn2b39pr",

29 "ProcessName": "Make DNA",

30 "Command": "echo AAAGCCCGTGGGGGACCTGTTC \u003e dna.txt",

31 "Params": {},

32 "Tags": {},

33 "StartTime": "2018-07-26T13:02:16.842112643+02:00",

34 "FinishTime": "2018-07-26T13:02:16.84486747+02:00",

35 "ExecTimeNS": 2754810,

36 "OutFiles": {

37 "dna": "dna.txt"

38 },

39 "Upstream": {}

40 }

41 }

42 }

43 }

44 }

Figure 2. Example audit log �le in JSON format [22], for a �le produced by a SciPipe work�ow. The work�ow used to produce this audit log in particular, is the one
in �gure 1. The audit information is hierarchical, with each level representing a step in the work�ow. The �rst level contains meta-data about the task executed
last, to produce the output �le that this audit log refers to. The �eld Upstream on each level, contains a list of all upstream task of the current task, indexed by the
�le paths that each of the upstream tasks did produce, and which was subsequently used by the current task. Each task is given a globally unique ID, which helps
to deduplicate any duplicate occurrences of tasks, when converting the log to other representations. Execution time is given in nanoseconds. Note that input paths
in the command �eld, is prepended with ../, compared to how they appear in the Upstream �eld. This is because each task is executed in a temporary directory
created directly under the work�ow’s main execution directory, meaning that to access existing data �les, it has to �rst navigate up one step out of this temporary
directory.

rameter tuning is often employed to �nd an optimal value of
a parameter, such as cost for Support Vector Machines (SVM),
which is then used to parametrize the �nal training part of the
work�ow.

Reusable components

Based on principles from Flow-based programming, the work-
�ow graph in SciPipe is de�ned by making connections be-
tween port objects bound to processes. This enables to keep
the dependency graph de�nition separate from the process
de�nitions. This is in contrast to other ways of connecting
data�ow processes, such as with data�ow variables, which are
shared between process de�nitions. This makes processes in
�ow-based programming fully self-contained, meaning that
libraries of reusable components can be created and that com-
ponents can be loaded on-demand when creating new work-
�ows. A graphical comparison between dependencies de�ned
with data�ow variables and �ow-based programming ports, is

shown in �gure 3.

Running subsets of work�ows

With pull-based work�ow tools like Snakemake or Luigi, it is
easy to on-demand reproduce a particular output �le, since the
scheduling mechanism is optimized for the use case of asking
for a speci�c �le and calculating all the tasks required to be
executed based on that.
With push-based work�ow tools though, reproducing a spe-

ci�c set of �les without running the full work�ow is not always
straight-forward. This is a natural consequence of the push-
based scheduling strategy, and data�ow in particular, as the
identities and quantities of output �les might not be known
before the work�ow is run.
SciPipe provides a mechanism for partly solving this lack

of “on demand �le generation” in push-based data�ow tools,
by allowing to reproduce all �les of a speci�ed process, on-
demand. That is, the user can tell the work�ow to run all pro-
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Figure 3. Comparison between data�ow variables and Flow-based program-
ming ports in terms of dependency de�nition. a) shows how data�ow variables
(blue and green) shared between processes (in gray) make the processes tightly
coupled. In other words, process- and network de�nitions get intermixed. b)
shows how ports (in orange) bound to processes in Flow-based programming
allows keeping the network de�nition separate from process de�nitions. This
enables processes to be reconnected freely without changing their internals.

cesses in the work�ow upstream of, and including, a speci�ed
process, while skipping processes downstream of it.
This has turned out very useful when iteratively refactoring

or developing new pipelines. When a part in the middle of a
long sequence of processes need to be changed, it is helpful to
be able to test-run the work�ow up to that particular process
only, not the whole work�ow, to speed up the development
iteration cycle.

Other characteristics

Below are a few technical characteristics and considerations
that are not necessarily unique to SciPipe, but could be of in-
terest to potential users assessing whether SciPipe �ts their
use cases.
Data centric audit log
The audit log feature in SciPipe collects meta data about ev-
ery executed task (concrete shell command invocation) which
is passed along with every �le that is processed in the work-
�ow. It writes a �le in the ubiquitous JSON format, with the
full trace of tasks executed for every output in the work�ow,
with the same name as the output �le in question but with the
additional �le extension .audit.json. Thus, for every output
in the work�ow, it is possible to check the full record of shell
commands used to produce it. An example audit log �le can be
seen in �gure 2.
This data-oriented provenance reporting contrasts to prove-

nance reports common in many work�ow tools, which often
provide one report per work�ow run only, meaning that the
link between data and provenance report is not as direct.
The audit log feature in SciPipe in many aspects re�ects

the recommendations in [24] for developing provenance report-
ing in work�ows, such as producing a coherent, accurate, in-
spectable record for every output data item from the work�ow.
By producing provenance records for each data output rather
than for the full work�ow only, SciPipe could provide a basis
for the problem of iteratively developing work�ow variants, as
outlined in [25].
SciPipe also loads any existing provenance reports for ex-

isting �les that it uses, and merges these with the provenance
information from its own execution. This means that even if
a chain of processing is spread over multiple SciPipe work�ow

scripts, and executed at di�erent times by di�erent users, the
full provenance record is still being kept and assembled, as long
as all work�ow steps were executed using SciPipe shell com-
mand processes. The main limitation to this “follow the data”
approach, is for data generated externally to the work�ow, or
by SciPipe components implemented in Go. For external pro-
cesses, it is up to the external process to generate any reporting.
For Go-based components in SciPipe, these can not currently
dump a textual version of the Go code executed. This consti-
tutes an area of future development.
SciPipe provides experimental support for converting the

JSON-structure into reports in HTML and TeX format, or into
executable Bash scripts that can reproduce the �le which the
audit report describes from available inputs or from scratch.
These tools are available in the scipipe helper command. The
TeX report can be easily further converted to PDF using the
pdflatex command of the pdfTex software [26]. An example of
such a PDF report, is shown in �gure 4, which was generated
from the audit report for the last �le generated by the code
example in �gure 1.
Atomic writes
SciPipe ensures that cancelled work�ow runs do not result in
half-written output �les being mistaken for �nished ones. It
does this by executing each task in a temporary folder, and
moving all newly created �les into their �nal location after the
task is �nished. By using a folder for the execution, any extra
�les created by a tool that are not explicitly con�gured by the
work�ow system, are captured and treated in an atomic way.
Examples of where this is needed is for the �ve extra �les cre-
ated by bwa index [27], when indexing a reference genome in
FASTA format.
Streaming support
In data intensive �elds like Next-Generation Sequencing, it
is common that intermediate steps of pipelines produce large
amounts of intermediate data, often multiplying the storage
requirements considerably compared to the raw data from se-
quencing machines [28]. To help ease these storage require-
ments, SciPipe provides the ability to optionally stream data
between two tasks via Random Access Memory (RAM) instead
of saving to disk between task executions. This approach has
two bene�ts. Firstly, the data does not need to be stored on
disk, which can lessen the storage requirements considerably.
Secondly, it enables the downstream task to start processing
the data from the upstream task immediately as soon as the
�rst task has started to produce partial output. It thus enables
to achieve pipeline parallelism in addition to data parallelism, and
can thereby shorten the total execution time of the pipeline.
Flexible �le naming and data “caching”
SciPipe allows �exible naming of the �le path of every inter-
mediate output in the work�ow, based on input �le names and
parameter values passed to a process. This enables creating
meaningful �le naming schemes, to make it easy to manually
explore and sanity-check outputs from work�ows.
Con�guring a custom �le naming scheme is not required

though. If no �le path is con�gured, SciPipe will automatically
create a �le path that ensures that two tasks with di�erent
parameters or input data will never clash, and that two tasks
with the same command signature, parameters and input-�les,
will reuse the same cached data.

Known limitations

Below we list some design decisions and known limitations of
SciPipe that might a�ect the decision whether to use SciPipe
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Figure 4. Audit report for the last �le generated by the code example in �gure 1, converted to TeX with SciPipe’s experimental audit2tex feature and then converted
to PDF with pdfTeX. In the top, the PDF �le includes summary information about the SciPipe version used and the total execution time. After this follows an
execution time line, in a gantt-chart style, that shows the relative execution times of individual tasks in a graphical way. After this follows a comprehensive list
of tables with information for each task executed towards producing the �le for which the audit report belongs. The task boxes are color coded and ordered in the
same way that the tasks appear in the timeline.

for a particular use case or not.
Firstly, the fact that writing SciPipe work�ows requires

some basic knowledge of the Go programming language, can
be o�-putting to users who are not well acquainted with pro-
gramming. Go code, although having taken inspiration from
scripting languages, is still markedly more verbose and low-
level in nature than Python, and can take a little longer to get
used to.
Secondly, the level of integration with HPC resource man-

agers is currently quite basic compared to some other work�ow
tools. The SLURM resource manager can readily be used by us-
ing the Prepend �eld on processes to add a string with a call to
the salloc SLURM command, but more advanced HPC integra-
tion is planned to be addressed in upcoming versions.
Furthermore, reproducing speci�c output �les is not as nat-

ural and easy as with pull-based tools like Snakemake, al-
though SciPipe provides a mechanism to partly resolve this
problem.
Finally, SciPipe does not yet support integration with

the Common Work�ow Language [29], for interoperability of
work�ows. This is a prioritized area for future development.

Case Studies

To demonstrate the usefulness of SciPipe, we have used it to im-
plement a number of representative pipelines from drug discov-
ery and bioinformatics with di�erent characteristics and hence
requirements on the work�ow system. These work�ows are
available in a dedicated git repository on GitHub [30].

Machine learning pipeline in drug discovery

The initial motivation for building SciPipe stemmed from prob-
lems encountered with complex dynamic work�ows in ma-

chine learning for drug discovery applications. It was thus
quite natural to implement an example of such a work�ow in
SciPipe. To this end we re-implemented a work�ow imple-
mented previously for the SciLuigi library [20], which was it-
self based on an earlier study [31].
In short, this work�ow trains predictive models using the

LIBLINEAR software [32] with molecules represented by the
signature descriptor [33]. For linear SVM a cost parameter
needs to be tuned, and we tested 15 values (0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5) in a
10-fold cross-validated parameter sweep. Five di�erent train-
ing set sizes (500, 1000, 2000, 4000, 8000) were tested and
evaluated with a test set size of 1000. The raw data set con-
sists of 10,000 logarithmic solubility values chosen randomly
from a dataset extracted from PubChem [34] according to de-
tails in [20]. The work�ow is schematically shown in �gure 5
and was plotted using SciPipe’s built-in plotting function. The
�gure has been modi�ed for clarity by collapsing the individual
branches of the parameter sweeps and cross validation folds, as
well as by manually making the layout more compact.
The implementation in SciPipe was done by creating

components which are de�ned in separate �les (named
comp_COMPONENTNAME in the repository), which can thus be reused
in other work�ows. This shows how SciPipe can successfully
be used to create work�ows based on reusable, externally de-
�ned components.
The fact that SciPipe supports parametrization of work�ow

steps with values obtained during the work�ow run, meant
that the full work�ow could be kept in a single work�ow def-
inition, in one �le. This also made it possible to create audit
logs for the full work�ow execution for the �nal output �les,
and to create the automatically plotted work�ow graph shown
in �gure 5. This is in contrast to the SciLuigi implementation,
where the parameter sweep to �nd the optimal cost, and the �-
nal training, had to be implemented in separate work�ow �les
(wffindcost.py and wfmm.py in [35]), and executed as a large
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Figure 5. Directed graph of the machine learning drug discovery case study work�ow, plotted with SciPipe’s work�ow plotting function. The graph has been
modi�ed for clarity by collapsing the individual branches of the parameter sweeps and cross validation fold-generation. The layout has also been manually made
more compact to be viewable in print. The collapsed branches are indicated by intervals in the box labels. tr{500-8000} represent branching into training dataset
sizes 500, 1000, 2000, 4000, 8000. c{0.0001-5.0000} represent cost values 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5, while
fld{1-10} represent cross validation folds 1-10. Nodes represent processes, while edges represent data dependencies. The labels on the edge heads and tails
represent ports. Solid lines represent data dependencies via �les, while dashed lines represent data dependencies via parameters, which are not persisted to �le,
only transmitted via RAM.

number of completely separate work�ow runs (one for each
dataset size) which meant that logging became fragmented
into a large number of disparate log �les.

Genomics cancer-analysis pipeline

Sarek [36] is an open-source analysis pipeline to detect germ-
line or somatic variants from whole genome sequencing, de-
veloped by the National Genomics Infrastructure and National
Bioinformatics Infrastructure Sweden which are both plat-
forms at Science for Life Laboratory.
To test and demonstrate the applicability of SciPipe to ge-

nomics use cases the pre-processing part of the Sarek pipeline
was implemented in SciPipe. See �gure 6 for a directed pro-
cess graph of the work�ow, plotted with SciPipe’s work�ow
plotting function.
The test data in the test work�ow consists of multiple sam-

ples of normal and tumor pairs. The work�ow starts with
aligning each sample to a reference genome using BWA [27]
and forwarding the results to Samtools [37] which saves the
result as a sorted BAM �le. After each sample has been aligned,
Samtools is again used, to merge the normal- and tumor sam-
ples into a one BAM [37] �le for tumor samples, and one for
normal. Picard [38] is then used to mark duplicate reads in
both the normal- and tumor sample BAM �les, whereafter
GATK [39] is used to recalibrate the quality scores of all reads.
The outcome of the work�ow is two BAM �les; one contain-
ing all the normal samples and one containing all the tumor
samples.
Genomics tools and pipelines have their own set of require-

ments, which was shown by the fact that some aspects of SciP-
ipe had to be modi�ed in order to ease development of this
pipeline. In particular, many genomics tools produce addi-
tional output �les apart from those speci�ed on the command-
line. One example of this is the extra �les produced by BWA
when indexing a reference genome in FASTA format. The bwa
index command produces some �ve �les, which are not explic-
itly de�ned on the command-line (with the extensions of .bwt,
.pac, .ann, .amb and .sa). Based on this realization, SciPipe was
amended with a folder-based execution mechanism which ex-
ecutes each task in a temporary folder, that keeps all output
�les separate from the main output directory until the whole
task has completed. This ensures that also �les that are not ex-
plicitly de�ned and handled by SciPipe, are also captured and
handled in an atomic manner, so that �nished and un�nished
output �les are always properly separated.

Furthermore, agile development of genomic tools often re-
quires being able to see the full command that is used to ex-
ecute a tool, because of the many options that are available
to many bioinformatics tools. This work�ow was thus imple-
mented with ad-hoc commands, which are de�ned in-line in
the work�ow. The ability to do this shows that SciPipe sup-
ports di�erent ways of de�ning components, depending on
what �ts the use case best.
The successful implementation of this genomics pipeline in

SciPipe, thus both ensures and shows that SciPipe is works well
for tools common in genomics.

RNA-seq / transcriptomics pipeline

To test the ability of SciPipe to work with software used in
transcriptomics, some of the initial steps of a generic RNA-
sequencing work�ow were also implemented in SciPipe. Com-
mon steps that are needed in transcriptomics is to run quality
controls and generate reports of the analysis steps.
The RNA-seq case study pipeline implemented for this pa-

per uses FastQC [40] to evaluate the quality of the raw data
being used in the analysis before aligning the data using
STAR [41]. After the alignment is done it is evaluated using
QualiMap [42], while the Subread package [43] is used to do a
feature counting.
The �nal step of the work�ow is to combine all the previous

steps for a composite analysis using MultiQC [44], which will
summarize the quality of both the raw data and the result of
the alignment into a single quality report. See �gure 7 for a
directed process graph of the work�ow, plotted with SciPipe’s
work�ow plotting function.
The successful implementation of this transcriptomics

work�ow in SciPipe ensures that SciPipe works well for dif-
ferent types of bioinformatics work�ows and is not limited to
one speci�c sub-�eld of bioinformatics.

Conclusions

SciPipe is a programming library that provides a way to write
complex and dynamic pipelines in bioinformatics, cheminfor-
matics, and more generally in data science and machine learn-
ing pipelines involving command-line applications.
Dynamic scheduling allows parametrizing new tasks with

values obtained during the work�ow run, and the Flow-based
programming principles of separate network de�nition and
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Figure 6. Directed graph of work�ow processes in the Genomics / Cancer Analysis pre-processing pipeline, plotted with SciPipe’s work�ow plotting function.
Nodes represent processes, while edges represent data dependencies. The labels on the edge heads and tails represent ports.
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Figure 7. Directed graph of work�ow processes in the RNA-Seq Pre-processing work�ow, plotted with SciPipe’s work�ow plotting function. Nodes represent
processes, while edges represent data dependencies. The labels on the edge heads and tails represent ports.

named ports allow creating a library of reusable components.
By having access to the full power of the Go programming lan-
guage to de�ne work�ows, existing tooling is leveraged.
Scipipe adopts state-of-the art strategies for achieving

atomic writes, caching of intermediate �les and a data-centric
audit log feature that allows identifying the full execution
trace for each output, that can be exported into either human-
readable HTML or TeX/PDF formats, or executable Bash-
scripts.
SciPipe also provides some features not commonly found in

many tools such as support for streaming via Unix named pipes,
ability to run push-based work�ows up to a speci�c stage of
the work�ow, and �exible support for �le naming of interme-
diate data �les generated by work�ows. SciPipe work�ows can
also be compiled into standalone executables, making deploy-
ment of pipelines maximally easy, requiring only Bash and any
external command-line tools used, to be present on the target
machine.
By being a small library without required external depen-

dencies apart from the Go tool chain and Bash, SciPipe is ex-
pected to be possible to be maintained and developed in the
future even without a large team or organization backing it.
The applicability of SciPipe for cheminformatics, genomics

and transcriptomics pipelines has been demonstrated with case
study work�ows in these �elds.

Methods

The Go Programming Language

The Go Programming Language (referred to as just "Go") was
developed by Robert Griesemer, Rob Pike and Ken Thompson
at Google, to provide a statically typed and compiled language
that makes it easier to build highly concurrent programs, that
can also make good use of multiple CPU cores (i.e. “paral-
lel program”), than what is the case in widespread compiled
languages like C++ [45]. It tries to provide this by provid-
ing a small, simple language, with concurrency primitives —
go-routines and channels — built-in to the language. Go-
routines, which are so called light-weight threads, are auto-
matically mapped, or multiplexed, onto physical threads in the
operating system. This means that very large numbers of go-
routines can be created while maintaining a low number of
operating system threads, such as one per CPU core on the
computer at hand. This makes Go an ideal choice for prob-
lems where many asynchronously running processes need to
be handled at the same time, or “concurrently”, and for mak-
ing e�cient use of multi-core CPUs.
The Go compiler is statically linking all its code as part of

the compilation. This means that all dependent libraries are
compiled into the executable �le. Because of this, SciPipe work-
�ows can be compiled into self-contained executable �les with-
out external dependencies apart from the Bash shell and any ex-
ternal command line tools used by the work�ow. This makes
deploying Go programs (and SciPipe work�ows) to production
very easy.
Go programs are very performant, often an order of magni-
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tude faster than interpreted languages like Python, and in the
same order of magnitude as the fastest languages, like C, C++
and Java [46].

Data�ow and Flow-based programming

Data�ow is a programming paradigm oriented around the idea
of independent, asynchronously running processes, that only
talk to each other by passing data between each other. This
data passing can happen in di�erent ways, such as via data�ow
variables, or via �rst-in-�rst-out channels.
Flow-Based Programming (FBP) [47] is a paradigm for pro-

gramming developed by John Paul Morrison at IBM in the late
60s / early 70s, to provide a composable way to assemble pro-
grams to be run at mainframe computers at customers such as
large banks.
It is a specialized version of data�ow, adding the ideas

of separate network de�nition, named ports, channels with
bounded bu�ers and information packets (representing the
data) with de�ned lifetimes. Just as in data�ow, the idea is
to divide a program into independent processing units called
“processes”, which are allowed to communicate with the out-
side world and other processes solely via message passing. In
FBP, this is always done over channels with bounded bu�ers
which are connected to named ports on the processes. Impor-
tantly, the network of processes and channels is in FBP de-
scribed “separate” from the process implementations, mean-
ing that the network of processes and channels can be recon-
nected freely without changing the internals of processes.
This strict separation of the processes, the separation of

network structure from processing units, and the loosely-
coupled nature of its only way of communication with the out-
side world (message passing over channels) makes �ow-based
programs extremely composable, and naturally component-
oriented. Any process can always be replaced with any other
process that supports the same format of the information pack-
ets on its in-ports and out-ports.
Furthermore, since the processes run asynchronously, FBP

is, just like Go, very well suited to make e�cient use of multi-
core CPUs, where each processing unit can suitably be placed
in its own thread or co-routine to spread out on the avail-
able CPU-cores on the computer. FBP has a natural connec-
tion to work�ow systems, where the computing network in an
FBP program can be likened to the network of dependencies
between data and processing components in a work�ow [20].
SciPipe leverages the principles of separate network de�nition
and named ports on processes. SciPipe has also taken some
inspiration for its API design from the GoFlow [48] Go-based
�ow-based programming framework.

Availability of supporting source code and re-
quirements

• Project name: SciPipe
• Documentation and project home page: http://scipipe.org
• Source code repository: https://github.com/scipipe/scipipe
• Persistent source code archive:
https://doi.org/10.5281/zenodo.1157941

• Case study work�ows:
https://github.com/pharmbio/scipipe-demo

• Operating system(s): Linux, Unix, Mac
• Other requirements: Bash, GraphViz (for work�ow graph
plotting), LaTeX (for PDF generation)

• License: MIT

Availability of supporting data

• The raw data for the machine learning cheminformatics
demonstration pipeline is available at:
https://doi.org/10.5281/zenodo.1324443

• The applications for the machine learning in drug discovery
case study is available at:
https://doi.org/10.6084/m9.�gshare.3985674.v1

• The raw data and tools for the genomics and transcrip-
tomics work�ows are available at:
https://doi.org/10.5281/zenodo.1324426
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